
R A I S I N G Y O U R C Y B E R R E S I L I E N C E

Practical Guide to
Reverse Engineering
Flutter Applications

W H I T E P A P E R

Flutter's popularity as a cross-platform framework has made it a go-to choice for building mobile
applications with a single codebase, simplifying development across Android and iOS. However, Flutter’s
architecture and compilation process introduce unique challenges for reverse engineering, especially
compared to native Android and iOS apps.

This whitepaper explores these differences and provides a step-by-step guide to reverse engineering
Flutter applications—from understanding the app structure and decompiling code to analyzing Dart
artifacts. Using an open-source Flutter app called Minesweeper, this guide demonstrates tools and
techniques for reverse engineering Flutter Application. Whether you are a security researcher or a
curious developer, this guide offers practical insights into the process.

By: Neel Patel (Security Engineer I @SecurityInnovation)
Asif Iqbal Gazi (Security Engineer II @SecurityInnovation)

Abstract

https://www.youtube.com/watch?v=hrvtfNlLcF4

WHITEPAPER

1.Extract the binary and load it into Ghidra.
2.Observe that, the exported symbols in the symbol tree include only:

 _kDartIsolateSnapshotData
 _kDartIsolateSnapshotInstructions
 _kDartVmSnapshotData
 _kDartVmSnapshotInstructions

Overview of Reverse Engineering Flutter Apps

Disassembling Flutter Binaries with Ghidra
For iOS applications, the core logic is typically found in the binary located in the
 located in the <app_name>.app directory. However, in Flutter apps the logic resides in
<app_name>.app > Frameworks > App.framework > App.

These symbols relate to the Dart runtime and its snapshot files, which manage compiled code and data.

Figure 2: Screenshot of Symbol Tree in Ghidra

Figure 1: Screenshot of Minesweeper App Extraction/Unzip

WHITEPAPER

Decoding Dart Runtime and Snapshots
Understanding the following components is critical for effective analysis:

Dart VM and Snapshots: Flutter applications are powered by the Dart Virtual Machine (VM), which
enables the execution of Dart code, managing everything from memory to runtime operations. In
production builds, Dart code is compiled Ahead-Of-Time (AOT) into native code, serialized into snapshot
files that the Dart VM loads at runtime. Snapshots are serialized representations of compiled Dart code
and data, allowing efficient runtime initialization.

VM Snapshots: These contain shared code and data required by all isolates, like core libraries and
commonly used functions. VM snapshots load at app startup, providing foundational instructions and
data.
Isolate Snapshots: Each isolate, an independent Dart execution context, has its own isolate snapshot
with isolate-specific code and data. This allows multiple isolates to run concurrently without shared
memory.

Isolates: In Dart and Flutter, concurrency is managed through isolates rather than traditional threads.
Each isolate has its own memory space and runs independently, avoiding the risks of shared memory.
The Dart VM manages the lifecycle of isolates, including creating, communicating, and terminating them.
This architecture enhances stability but adds complexity to reverse engineering, as each isolate operates
independently, making shared application state harder to track.

Dart Pool: The Dart Pool (or Object Pool) is an internal component of the Dart VM that manages
frequently used objects and data structures. Acting as a cache, the Dart Pool reduces redundant
memory allocations and optimizes performance. It manages reusable resources like pointers,
precompiled instructions, and certain serialized data elements frequently referenced across the
application.
The Dart Pool is closely related to Dart VM snapshots and isolates because it holds reusable resources
that isolates can access. When a new isolate is created, it doesn’t need to load resources from scratch;
instead, it can reference objects in the Dart Pool, improving memory use and isolate startup times. This
design is especially beneficial in Flutter, where applications often use multiple isolates (e.g., the main UI
isolate and background isolates for async tasks).

With the background information provided, the 5 exported symbols have the following significance:

_kDartIsolateSnapshotData represents the initial state of the Dart heap and includes isolate-specific
information.
_kDartIsolateSnapshotInstructions contains the Ahead-of-Time (AOT) code that is executed by the
Dart isolate.
_kDartVmSnapshotData represents the initial state of the Dart heap shared between isolates. This
helps launch Dart isolates faster but doesn’t contain any isolate-specific information.
_kDartVmSnapshotInstructions contains AOT instructions for common routines shared between all
Dart isolates in the VM. This snapshot is typically extremely small and mostly contains stubs.
_kDartIsolateSnapshotInstructions contains the application code that is executed by Dart Runtime.

We will not delve further into the technical details of the Dart Virtual Machine (DartVM) or Flutter
architecture in this guide. However, we have provided references and external resources at the end of
the whitepaper for readers interested in exploring these topics in more depth.

WHITEPAPER

Metadata Extraction

Patching and Preparing the Binary
With information obtained from the previous section, if we want to continue our static analysis journey
using Ghidra, we need symbolic information like Function Name, and Class Name. To do that, the app
needs to be patched manually by modifying the source code of DartVM, compiling it, and replacing the
runtime binary in the app. However, this is a tedious process. We can utilize an open-source framework
called reFlutter to automate this process.

Using reFlutter framework:

1.Patch the app binary following reFlutter's GitHub instructions.
2.Extract the patched application.
3.Update the info.plist file to support document browsing.
4.Compress the Payload folder, rename it to .ipa, and install the app on a device.
5.Retrieve the dumped metadata file after running the app.

Figure 3: Screenshot of Patching App Binary using reFlutter

Figure 4: Screenshot of Patched App Binary release.RE.ipa)

https://github.com/Impact-I/reFlutter
https://github.com/Impact-I/reFlutter

WHITEPAPER

Figure 5: Screenshot of modified info.plist

Figure 6: Screenshot of metadata dump after running the patched application for a while

WHITEPAPER

Resolving Symbols in Ghidra using Dumped Metadata File
We can now resolve the symbols using the dump.dart that we recovered previously.

1.Load the dumped metadata (dump.dart) into Ghidra.
2.Use the Ghidra script shared below to resolve function names and populate the symbol tree.

Head over to Window > Script Manager and Create a new script based on Java and paste the
following code:

// Java Script to resolve symbols in Flutter App using Dart metadata file.
// @Neel Patel

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.HashSet;
import java.util.Set;
import ghidra.app.script.GhidraScript;
import ghidra.app.cmd.disassemble.DisassembleCommand;
import ghidra.app.cmd.function.CreateFunctionCmd;
import ghidra.program.model.address.Address;
import ghidra.program.model.symbol.SourceType;

public class ResolveFunctions extends GhidraScript {

 /**
 * Creates a function at a given address with the specified name.
 *
 * @param offset The offset where the function is located.
 * @param functionName The name to assign to the function.
 */
 private void createFunction(long offset, String functionName) {
 // Convert offset to Address object
 Address functionAddress = toAddr(offset);
 println("Creating function: " + functionName);

 // Disassemble the function at the given address
 DisassembleCommand disassembleCmd = new
DisassembleCommand(functionAddress, null, true);
 if (disassembleCmd.applyTo(currentProgram)) {
 println("Disassembly successful at address: " + functionAddress);
 } else {
 println("Disassembly failed at address: " + functionAddress);
 return;
 }

 // Check if a function already exists at the address
 if (getFunctionAt(functionAddress) != null) {
 println("A function already exists at address " + functionAddress);
 return;
 }

WHITEPAPER

 // Create the function at the specified address
 CreateFunctionCmd createFunctionCmd = new CreateFunctionCmd(functionName,
functionAddress, null, SourceType.USER_DEFINED);
 if (createFunctionCmd.applyTo(currentProgram)) {
 println("Function created successfully at address: " + functionAddress);
 } else {
 println("Failed to create function at address: " + functionAddress);
 }
 }

 @Override
 public void run() {
 // Path to the Dart metadata file
 String metadataFilePath = "/Path/to/dump.dart";

 // Hex value to be added to the offset
 String dartSnapshotInstructionHexOffset = "0x0000e900";

 try (BufferedReader reader = new BufferedReader(new FileReader(metadataFilePath)))
{
// Set to store unique JSON objects
 Set<String> uniqueJsonObjects = new HashSet<>();
 StringBuilder jsonContent = new StringBuilder();
 String line;

// Read all lines from the file and accumulate them into jsonContent
 while ((line = reader.readLine()) != null) {
jsonContent.append(line);
 }

// Split the JSON content into separate JSON objects
 String[] jsonObjects = jsonContent.toString().split("\\}\\{");

// Print the table header for debugging
 printf("%-20s | %-20s | %-20s | %-20s%n", "Method Name", "Offset", "Library URL",
"Class Name");
 printf("--");

// Iterate over each JSON object
 for (String jsonObject : jsonObjects) {
// Clean up JSON object by removing leading '{' and trailing '}'
jsonObject = jsonObject.replaceFirst("^\\{", "").replaceAll("\\}$", "");

// Only process the JSON object if it's unique
if (uniqueJsonObjects.add(jsonObject)) {
// Split the JSON object into key-value pairs
String[] keyValuePairs = jsonObject.split(",");

String methodName = null, offsetHex = null, libraryUrl = null, className = null;

WHITEPAPER

 // Extract values from key-value pairs
for (String pair : keyValuePairs) {
 String[] keyValue = pair.split(":");
 String key = keyValue[0].replaceAll("\"", "").trim();
 String value = keyValue[1].replaceAll("\"", "").trim();

 // Assign the extracted values to respective variables
 switch (key) {
 case "method_name":
 methodName = value;
 break;
 case "offset":
 // Convert offset to hexadecimal and add the snapshot instruction offset
 int originalOffset = Integer.parseInt(value.substring(2), 16);
 int updatedOffset = originalOffset +
Integer.parseInt(dartSnapshotInstructionHexOffset.substring(2), 16);
 offsetHex = "0x" + String.format("%08x", updatedOffset);
 break;
 case "library_url":
 libraryUrl = value;
 break;
 case "class_name":
 className = value;
 break;
 }
}

// Print details for debugging or processing
// Uncomment the line below if you want to print the details to the console
// printf("%-20s | %-20s | %-20s | %-20s%n", methodName, offsetHex, libraryUrl,
className);

// Create the function using the parsed offset and method name
if (methodName != null && offsetHex != null) {
 createFunction(Long.parseLong(offsetHex.substring(2), 16), methodName);
}
}
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

WHITEPAPER

In the above script, replace the filePath with the Path of dump.dart file and also change the offset
address of _kDartIsolateSnapshotInstructions which can be retrieved as shown below:

After making required changes and running the script we can see that Symbol Tree is populated with
the original function names:

Figure 8: Screenshot of populated symbol tree in Ghidra using dump.dart and Ghidra Script

Figure 7: Screenshot of retrieving offset address in Ghidra using dump.dart

Note: The App Binary until this point can be patched. The changes made to the
binary after this point will result in an unpatchable binary. Changes made beyond
this point are only to make analysis easier.

After the previous steps, observe that there are no references between the code and data in the
disassembly, as shown in the figure below. (Searching for string “T I M E” from the source code):

WHITEPAPER

Resolving Code and Data References

Figure 9: Screenshot of the string “T I M E” in the source code

Figure 10: Screenshot of searching the string “T I M E” in Ghidra

WHITEPAPER

Enhancing Dart Code Analysis
The challenge discussed above arise due to:

Object Pool Indirection - as discussed in section 22.

Figure 11: Screenshot of Dart Serialization and Deserialization

Figure 12: Screenshot of Non-Standard Stack pointer in use

1. Get Serialized
Objects from Dart
Snapshot

Deserialized Dart Objects

Dart Object Pool Array

Serialized Dart Objects (_kDartIsolateSnapshotData)

Dart Code (_kDartIsolateSnapshotInstructions)

2. Deserialize
Dart Objects

3. Access Deserialized
Dart Objects through
Object Pool Array

4. Pointers to
Deserialized
Objects

Heap

App

Non-standard stack pointer usage: Dart VM uses register X15 as a stack pointer instead of the
standard SP

The Dart object pool is a big array with pointers to the Dart objects. During runtime, the Dart object
pool contains pointers to the deserialized dart objects like string and integers; these objects are
accessed using the X27 register. Register X27 points to the Dart Object Pool, and the deserialized
Dart objects are accessed through this pointer. As shown in the disassembly below, the object is
loaded into the X1 register.

WHITEPAPER

Also, Dart VM uses X15 as the Stack register instead of the SP register. During the disassembly,
decompilers deduce parameters based on the SP register. This is the reason why, in the decompiled
code, there are no local variables detected and functions don’t have any parameters.

In ARM64, registers X0-X7 are used for passing function parameters. If more than 8 parameters are
used, the subsequent values are stored on the stack. However in Dart, function parameters are
passed only on the stack. So reverse engineering tools like Ghidra often incorrectly assume the
number of function parameters used when performing decompilation.

Steps to address these challenges:
Add cross-references to deserialized objects.
Replace X15 with SP for stack pointer recognition.
Adjust function signatures to properly account for parameters passed on the stack.

Mapping Dart Objects
Establishing cross-references between the Dart code and the deserialized objects in the heap is a
challenging task, as the Dart objects are stored in the runtime heap. To retrieve these objects in
Ghidra, the following steps must be performed:

1.The Dart object pool and other Dart objects must be dumped from the application heap at
runtime.

2.This memory dump needs to be imported to Ghidra.
3.The data types of the Dart object pool and other Dart objects must be defined in Ghidra.
4.References to the X27 register must be replaced with the static memory location of the Dart

object pool array in the memory dump.

DartVM Registers
Registers used by Dart VM can be found here: https://github.com/dart-
lang/sdk/blob/main/runtime/vm/constants_arm64.h

https://github.com/dart-lang/sdk/blob/main/runtime/vm/constants_arm64.h
https://github.com/dart-lang/sdk/blob/main/runtime/vm/constants_arm64.h

WHITEPAPER

Figure 13: Screenshot of Dart-SDK source code Non-Standard Stack pointer

WHITEPAPER

Dumping Flutter Heap to Retrieve Object Pool
To get deserialized objects which are present in the memory heap, heap memory must be dumped
and then it can be imported in Ghidra for further analysis. Frida will be used in this tutorial for the
same purpose. First of all, we need to get information about object pool and heap start address
which can be retrieved by running the following Frida script:

//frida -U -f <package> -l frida.js
function hookFunc() {
 var dumpOffset = '0x000f9bdc' // Function to hook
 var argBufferSize = 150
 var baseApp = Module.findBaseAddress('App') // libapp.so (Android) or App (IOS)

 var codeOffset = baseApp.add(dumpOffset)
 console.log('')
 console.log('Wait..... ')
 Interceptor.attach(codeOffset, {
 onEnter: function(args) {

 var objectPool = this.context.x27;
 var baseHeap = this.context.x23;
 var bitMask = 0xF00000000;
 var baseHeapMasked = baseHeap.and(0xF00000000);
 let modules = Process.enumerateRanges("r-");
 for (var i = 0; i < modules.length; i++) {
 if((modules[i].base.and(bitMask)).compare(baseHeapMasked) == 0)
console.log(modules[i].base);
 }
 console.log("App Binary Base Address: "+baseApp)
 console.log("Heap Base Address (X23): "+ baseHeap);
 console.log("Object Pool Address (X27): " + objectPool);
 console.log("Number of Objects in the Object Pool:
"+Memory.readPointer(objectPool.add(0x8)));
 console.log("Heap bitmask: "+baseHeap.and(0xF00000000))
 },
 onLeave: function(retval) {

 }
 });
 }
 setTimeout(hookFunc, 1000)

WHITEPAPER

The output of the above script is as follows:

Figure 14: Screenshot of Output from Frida Hook

When the script is executed multiple times, it can be observed that the Heap Base Address and
Object Pool Address will change every time. The problem with dumping the entire application
memory is that it can be very large and impractical. To address this issue, the script retrieves the
heap base address, which in the example case is 0x1067880b1. It should be possible to dump
memory addresses that start with 0x1…….. which will contain the heap and object pool. It can be
accomplished using Bitmask. Using this logic the script below dumps the flutter heap:

WHITEPAPER

//frida -U -f <package> -l frida.js
var APP_DATA_DIR = "/var/mobile/Containers/Data/Application/--/Documents/" // make
sure that the directory is writable
function dump_memory(baseHeap, dump_directory){
 let modules = Process.enumerateRanges("r--");
 let i, module;
 let module_file;
 var bitMask = 0xF00000000; //bitMask to retain msb and set remaining to zero
 var baseHeapMasked = baseHeap.and(0xF00000000);
 module_file = new File(dump_directory + "ranges.json", "wb");
 module_file.write(JSON.stringify(modules, null, 2));
 module_file.close();
 for (i = 0; i < modules.length; i++) {
 try {
 module = modules[i];
 if ((modules[i].base.and(bitMask)).compare(baseHeapMasked) == 0) {
console.log(`Dumping memory into ${dump_directory + module.base}`);
module_file = new File(dump_directory + module.base, "wb");
module_file.write(module.base.readByteArray(module.size));
module_file.close();
 }
 } catch(ex) {
 console.log(ex);
 console.log(JSON.stringify(module, null, 2));
 }
 }
}
function hookFunc() {
 var dumpOffset = '0x000f9bdc' //restartGame (Function to hook)
 var baseApp = Module.findBaseAddress('App') // libapp.so (Android) or App (IOS)

 var codeOffset = baseApp.add(dumpOffset)
 console.log('')
 console.log('Wait..... ')

 Interceptor.attach(codeOffset, {
 onEnter: function(args) {

var objectPool = this.context.x27;
var baseHeap = this.context.x23;
var bitMask = 0xF00000000;
var baseHeapMasked = baseHeap.and(0xF00000000);

let modules = Process.enumerateRanges("r-");
for (var i = 0; i < modules.length; i++) {
if((modules[i].base.and(bitMask)).compare(baseHeapMasked) == 0)
console.log(modules[i].base);
}

WHITEPAPER

dump_memory(baseHeap, APP_DATA_DIR);
console.log("App Binary Base Address: "+baseApp)
console.log("Heap Base Address (X23): "+ baseHeap);
console.log("Object Pool Address (X27): " + objectPool);
console.log("Number of Objects in the Object Pool:
"+Memory.readPointer(objectPool.add(0x8)));
console.log("Heap bitmask: "+baseHeap.and(0xF00000000)) },
onLeave: function(retval) {

}
 });
 }

 setTimeout(hookFunc, 1000)

The directory where the Flutter application is installed on the device is usually writable by the app
itself. To determine the location of the app installation, the r2Frida tool can be used to print the
relevant information, as shown in the figure below.

Figure 15: Screenshot of r2Frida output

WHITEPAPER

Figure 17: Screenshot of dumpMemory.js script in action

Figure 16: Screenshot of Frida dumpMemory.js script

WHITEPAPER

As shown in the figure above, all the memory addresses that start with 0x1…….. were dumped as
Heap Base Address starts with 0x1…….. also note that Object Pool Address should be a part of
heap. It is important to note down all the above addresses as they are required to be used in
Ghidra. Copy the memory dump from the device to the PC.

Figure 18: Screenshot of all the memory dumps

WHITEPAPER

Importing Memory Dump in Ghidra
After copying the memory dump to the PC, it’s time to start importing the memory dumps to Ghidra.
Before doing that, the Base Address of the binary needs to be set to match it with the addresses in
the dump file. To do that, go to Window > Memory Map

Figure 19: Screenshot of App Binary in Ghidra

Click on Set Image Base on the top right:

Figure 20: Screenshot of App Binary in Ghidra Memory Map Window

WHITEPAPER

Enter the Base Image Address that was retrieved during memory dump output:

Figure 21: Screenshot of App Binary rebasing in Ghidra Memory Map Window

Copy the memory dumps to a dedicated folder:

Figure 22: Screenshot of Memory dumps in dedicated folder

Note: Make sure to set the Base Image Address before
importing the memory dump into Ghidra.

WHITEPAPER

The following Ghidra script can be used to import memory dumps:

import ghidra.app.script.GhidraScript;
import ghidra.program.model.mem.Memory;
import ghidra.program.model.mem.MemoryBlock;
import ghidra.program.model.address.Address;
import ghidra.util.task.TaskMonitor;
import java.io.File;
import java.io.FileInputStream;
import java.io.BufferedInputStream;
import java.io.DataInputStream;
import java.io.IOException;

public class ImportMemoryDump extends GhidraScript {

 @Override
 public void run() {
 try {
 // Ask the user to select a folder containing the memory dump files
 File folder = askDirectory("Select folder", "Import Memory Dump Files");

 // Early exit if folder is not selected or invalid
if (folder == null || !folder.exists() || !folder.isDirectory()) {
println("Error: Invalid folder selected. Script aborted.");
return;
 }

 // List all files in the selected folder
 File[] dumpFiles = folder.listFiles();

 // Check if folder contains memory dump files
if (dumpFiles == null || dumpFiles.length == 0) {
println("No memory dump files found in the folder.");
return;
 }

 // Process each memory dump file
for (File dumpFile : dumpFiles) {
try {
importMemoryFromFile(dumpFile);
} catch (Exception e) {
// Catch exceptions for each individual file and log the error without stopping the script
println("Error processing file: " + dumpFile.getName());
println("Exception: " + e.getMessage());
e.printStackTrace();
}
 }

 println("All memory dump files processed.");

WHITEPAPER

 } catch (Exception e) {
 // Catch any unexpected exceptions that occur during the entire script execution
 println("An unexpected error occurred during script execution.");
 println("Exception: " + e.getMessage());
 e.printStackTrace();
 }
 }

 /**
 * Imports a memory dump file into the current program.
 *
 * @param dumpFile The file containing the memory dump.
 */
 private void importMemoryFromFile(File dumpFile) {
 try (FileInputStream fis = new FileInputStream(dumpFile);
BufferedInputStream bis = new BufferedInputStream(fis);
DataInputStream dis = new DataInputStream(bis)) {

 // Get the size of the memory dump file
 long fileSize = dumpFile.length();
 long baseAddress = extractBaseAddressFromFileName(dumpFile.getName());

 // Import the file as a memory block using the InputStream approach
 importMemoryBlockToGhidra(dumpFile.getName(), baseAddress, fis, fileSize);

 println("Successfully imported memory dump file: " + dumpFile.getName());

 } catch (IOException e) {
 // Handle file read exceptions
 println("Error reading memory dump file: " + dumpFile.getName());
 println(e.getMessage());
 e.printStackTrace();
 } catch (NumberFormatException e) {
 // Handle address parsing exceptions
 println("Error parsing address from file name: " + dumpFile.getName());
 println(e.getMessage());
 e.printStackTrace();
 } catch (Exception e) {
 // Catch any other unforeseen exceptions
 println("An unexpected error occurred with file: " + dumpFile.getName());
 println(e.getMessage());
 e.printStackTrace();
 }
 }

WHITEPAPER

 /**
 * Extracts the base address from the file name, assuming the base address is
 * encoded as hexadecimal starting from the 3rd character of the file name.
 *
 * @param fileName The name of the memory dump file.
 * @return The base address as a long.
 * @throws NumberFormatException If the address string is not a valid hexadecimal
number.
 */
 private long extractBaseAddressFromFileName(String fileName) throws
NumberFormatException {
 // Extract address from file name (assumed to start from the 3rd character)
 String addressStr = fileName.substring(2);
return Long.parseLong(addressStr, 16);
 }

 /**
 * Imports the memory dump data into the Ghidra program's memory at the specified
address.
 *
 * @param blockName The name of the memory block (usually the dump file's name).
 * @param baseAddress The base address at which to import the memory dump.
 * @param inputStream The InputStream containing the memory dump data.
 * @param length The length of the memory dump data.
 */
 private void importMemoryBlockToGhidra(String blockName, long baseAddress,
FileInputStream inputStream, long length) {
 try {
 Address address = toAddr(baseAddress);
 Memory memory = currentProgram.getMemory();

 // Create a new memory block and initialize it with the InputStream
 TaskMonitor monitor = getMonitor(); // You can optionally pass a TaskMonitor to
track progress
 MemoryBlock block = memory.createInitializedBlock(blockName, address,
inputStream, length, monitor, false);

 println("Memory block successfully created for file: " + blockName);
 } catch (Exception e) {
 // Handle errors related to importing memory
 println("Error importing memory block: " + blockName);
 println(e.getMessage());
 e.printStackTrace();
 }
 }
}

WHITEPAPER

After running the above script Memory Map should look like this:

Figure 23: Screenshot of Resolved Memory Map

struct DartObjectTag
{
 charis_canonical_and_gc;
 charsize_tag;
 __int16cid;
};
The Dart object pool is a Dart object itself thus it starts with a DartObjectTag followed by the
number of Dart objects in the pool (at offset 8) and ends with an array of pointers to Dart
objects.
struct DartObjectPool
{
 DartObjectTagtag;

 __int64nb_dart_objects_in_object_pool;
 DartObject*object_pool_array[];
};

WHITEPAPER

Resolving Object Pool Array
After Importing Memory Dump in Ghidra and Jumping onto the Address where object pool array is
located:

DartObjectPool

DartObjectTag

Each Pointer Occupies 0x8 bytes

Number of Objects in Object Pool

 0x10Located at Offset:

DartObject *object_pool_array[] (Array of Pointers to Dart Objects)

 0x8 0x0

The addresses stored in the Dart object pool array are odd. Along with addresses, Small Integers
(smi) are also stored on the array. To differentiate between Small Integers and Pointers, Small
Integers have their LSB set to 0 and Pointers are made odd. Thus odd values on the Dart object pool
array are pointers and even values are small integers. The real value of a Pointer is the value of
Pointer subtracted by 1 (i.e. if ox1078881 is the value stored on Dart object pool, the real address
would be 0x1078880). In case of Small Integers, the value must be right shifted by 1 (i.e. SMI value
50 resolves to integer value 50>>1 = 25).

WHITEPAPER

Ghidra needs to be instructed to create the object pool array. The following script can be used to
create object pool array (Make sure to replace object pool address in the script) :

import ghidra.app.script.GhidraScript;
import ghidra.program.model.address.Address;
import ghidra.program.model.data.PointerDataType;
import ghidra.program.model.data.*;

public class DartObjectPoolPointers extends GhidraScript {
 @Override
 public void run() {
 try {
 // Define the base address of the object pool
 Address objectPoolBaseAddress = toAddr(0x107780080L);

 // Define the start address of the array (object pool base + 0x10)
 Address arrayStartAddress = objectPoolBaseAddress.add(0x10);

 // Define the end address of the array
 Address arrayEndAddress = objectPoolBaseAddress.add(0x8 * 0x25B5);

 // Define the data type for a pointer
 DataType pointerDataType = new PointerDataType();

 int pointerIndex = 0;

 // Traverse the memory addresses in the array
while (arrayStartAddress.compareTo(arrayEndAddress) <= 0) {
pointerIndex++;
try {
Address pointerAddress = toAddr(getLong(arrayStartAddress));

// Check if the pointer address is misaligned (odd)
if ((pointerAddress.getOffset() & 1) != 0) {
 println("Before: "+arrayStartAddress.toString());
 // Clear the existing data at this address
 clearListing(
 arrayStartAddress,
 arrayStartAddress.add(pointerDataType.getLength() - 1)
);

 // Correct the misalignment
 setLong(arrayStartAddress, pointerAddress.getOffset());

 // Create a new pointer data type at this address
 createData(arrayStartAddress, pointerDataType);

 //println("Corrected pointer: " + pointerAddress);
 println("Pointer index: " + pointerIndex);

WHITEPAPER

 }
} catch (Exception e) {
println("Error processing address " + arrayStartAddress + ": " + e.getMessage());
}

// Move to the next 8-byte aligned address
arrayStartAddress = arrayStartAddress.add(8);
 }
 } catch (Exception e) {
 println("An unexpected error occurred: " + e.getMessage());
 }
 }
}

Figure 24: Screenshot of DartObjectPoolParser Ghidra Script

After running the above script, object pool array gets created and pointers to dart objects should be
visible as shown below:

WHITEPAPER

Figure 25: Screenshot of Dart Object Pool Array in Ghidra

Creating Dart Objects
After creating the pointers in the Dart Object Pool Array, Ghidra doesn't have any information about
the structure of Dart Objects as shown below:

Figure 26: Screenshot of unresolved Dart Object in Ghidra

Identification of Dart Objects
The structure of Dart Deserialized Object is as follows (as evident from dart-sdk source code):

WHITEPAPER

 struct DartDeserializedObject
{
 char is_canonical_and_gc;
 char size_tag;
 __int16 cid;
 <intpadding>
 __int64 s_len; //s_len is stored as Small Integer so real length is s_len>>1;
 char s[];
};

In order to create the objects, the object pool array has to be traversed and the structure of the
objects need to be created manually by writing Ghidra script.
We will utilize the ClassId which is 0x5 or 5L (source link)

Figure 27: Screenshot of ClassId from Dart-SDK Source Code

https://github.com/dart-lang/sdk/blob/main/runtime/vm/app_snapshot.cc
https://github.com/dart-lang/sdk/blob/main/runtime/vm/class_id.h

WHITEPAPER

The below script can be used to create Dart String Objects:

import ghidra.app.script.GhidraScript;
import ghidra.program.model.address.Address;
import ghidra.program.model.data.*;
import ghidra.program.model.listing.*;
import ghidra.program.model.mem.Memory;
import ghidra.util.exception.CancelledException;

public class DartObjectPoolParser extends GhidraScript {
 private static final long OBJECT_POOL_START_OFFSET = 0x10L;
// Change this to the number of section as per your dump file
 private static final long NUM_OBJECTS = 0x25B5L;
// Pointer size is 8 for aarch64
 private static final int POINTER_SIZE = 8;

 @Override
 public void run() {
 try {
 // Define object pool boundary
 long objectPoolStartAddress = 0x107780080L + OBJECT_POOL_START_OFFSET;
 long objectPoolEndAddress = objectPoolStartAddress + (POINTER_SIZE *
NUM_OBJECTS);

 Memory memory = currentProgram.getMemory();
 byte[] pointerBytes = new byte[POINTER_SIZE];

 // Iterate through the object pool
for (long currentAddress = objectPoolStartAddress; currentAddress <
objectPoolEndAddress; currentAddress += POINTER_SIZE) {
monitor.checkCanceled(); // Handle script cancellation

try {
memory.getBytes(toAddr(currentAddress), pointerBytes);
long objectAddress = bytesToLong(pointerBytes);

if (objectAddress != 0) {
 processObject(memory, objectAddress, currentAddress);
}
} catch (Exception e) {
println("Error at address " + Long.toHexString(currentAddress) + ": " + e.getMessage());
}
 }

WHITEPAPER

 println("Dart object pool structures created successfully!");
 } catch (CancelledException e) {
 println("Script canceled by user.");
 } catch (Exception e) {
 println("Error: " + e.getMessage());
 }
 }

 private void processObject(Memory memory, long objectAddress, long pointerAddress)
throws Exception {
 byte[] structBytes = new byte[4];
 memory.getBytes(toAddr(objectAddress), structBytes);

 // Extract CID field
 short cid = (short) ((structBytes[2] & 0xFF) | ((structBytes[3] & 0xFF) << 8));

 // Filter objects based on CID values
 if (cid == 0x5) {
 println("CID: " + Integer.toHexString(cid));
 println("Pointer value at " + Long.toHexString(pointerAddress) + ": " +
Long.toHexString(objectAddress));
 createStringDataStructure(toAddr(objectAddress));
 }
 }

 private void createStringDataStructure(Address structAddress) {
 try {
 // Read string length and content
 long stringLength = getLong(structAddress.add(0x8)) >> 1;
 StringBuilder stringContent = new StringBuilder();

for (int i = 0; i < stringLength; i++) {
byte b = getByte(structAddress.add(0x10 + i));
stringContent.append((char) (b & 0xFF));
 }

 String stringName = stringContent.toString();

 // Define DartString structure
 Structure dartStringStruct = new StructureDataType(stringName, 0);
 dartStringStruct.add(ByteDataType.dataType, "is_canonical_and_gc", null);
 dartStringStruct.add(ByteDataType.dataType, "size_tag", null);
 dartStringStruct.add(ShortDataType.dataType, "cid", null);
 dartStringStruct.add(DWordDataType.dataType, "padding", null); // Padding for
alignment
 dartStringStruct.add(QWordDataType.dataType, "string_length", null);
 dartStringStruct.add(new ArrayDataType(CharDataType.dataType, (int)
stringLength, 1), "string_content", null);

 DataUtilities.createData(
currentProgram,
structAddress,
dartStringStruct,
dartStringStruct.getLength(),
DataUtilities.ClearDataMode.CLEAR_ALL_UNDEFINED_CONFLICT_DATA
);

 println("DartString structure created successfully at address " + structAddress);
 } catch (Exception e) {
 println("Failed to create DartString structure: " + e.getMessage());
 }
 }

 private long bytesToLong(byte[] bytes) {
 long value = 0;
 for (int i = bytes.length - 1; i >= 0; i--) {
 value = (value << 8) | (bytes[i] & 0xFF);
 }
 // Adjust for object pool pointer odd values
 if (value > 0 && (value % 2L == 1L)) {
return value - 1;
 }
return 0L;
 }
}

WHITEPAPER

After running the above script, it can be seen that Dart String Objects have been successfully
created:

Figure 28: Screenshot of Dart String Object

WHITEPAPER

Before moving forward, one more change needs to be applied to the Dart Object Pool array as the
pointers are odd in order to differentiate between Integer and the pointers in the array. In order for
Ghidra to set the correct reference to string, the pointers should be pointing to start of the string. In
order to resolve that, one should subtract all the pointers in the Dart Object Pool using the below
script:

import ghidra.app.script.GhidraScript;
import ghidra.program.model.address.Address;
import ghidra.program.model.data.PointerDataType;
import ghidra.program.model.data.*;

public class DartObjectPoolPointers extends GhidraScript {
 @Override
 public void run() {
 try {
 // Define the base address of the object pool
 Address objectPoolBaseAddress = toAddr(0x107780080L);

 // Define the start address of the array (object pool base + 0x10)
 Address arrayStartAddress = objectPoolBaseAddress.add(0x10);

 // Define the end address of the array
 Address arrayEndAddress = objectPoolBaseAddress.add(0x8 * 0x25B5);

 // Define the data type for a pointer
 DataType pointerDataType = new PointerDataType();

 int pointerIndex = 0;

 // Traverse the memory addresses in the array
while (arrayStartAddress.compareTo(arrayEndAddress) <= 0) {
pointerIndex++;
try {
Address pointerAddress = toAddr(getLong(arrayStartAddress));

// Check if the pointer address is misaligned (odd)
if ((pointerAddress.getOffset() & 1) != 0) {
 //println("Misaligned address found at: " + arrayStartAddress);
 pointerAddress = pointerAddress.subtract(1);
 println("Before: "+arrayStartAddress.toString());
 // Clear the existing data at this address
 clearListing(
 arrayStartAddress,
 arrayStartAddress.add(pointerDataType.getLength() - 1)
);

 // Correct the misalignment
 setLong(arrayStartAddress, pointerAddress.getOffset());

WHITEPAPER

 // Create a new pointer data type at this address
 createData(arrayStartAddress, pointerDataType);

 //println("Corrected pointer: " + pointerAddress);
 println("Pointer index: " + pointerIndex);
}
} catch (Exception e) {
println("Error processing address " + arrayStartAddress + ": " + e.getMessage());
}

// Move to the next 8-byte aligned address
arrayStartAddress = arrayStartAddress.add(8);
 }
 } catch (Exception e) {
 println("An unexpected error occurred: " + e.getMessage());
 }
 }
}

It can be seen that Object Pool Array pointers now point to the correct address:

Figure 29: Screenshot of Dart Pool Array with Correct Address

WHITEPAPER

Figure 30: Screenshot of X27 register mystery

Adding References Between Code and Data
To add references between code and data, the register X27, which points to the Object Pool Array,
needs to be provided a default value. Then, Ghidra will be able to add references between the code and
data automatically.

In the figure shown below, it is still not known to Ghidra what object is being loaded, as the value of X27
is unavailable to Ghidra.

The value of the X27 register, which was retrieved during the memory dump, can be set.

As the TEXT/text section contains the code, the value of X27 can be replaced for the addresses that
contain the TEXT/text section. Head over to the Memory Map to find the addresses. As shown in the
figure below, the start address would be 0x106058000 and end address 0x106239b7f.

WHITEPAPER

Figure 31: Screenshot of entire memory map

Run the script below:

import java.math.BigInteger;
import ghidra.app.script.GhidraScript;
import ghidra.program.model.address.Address;
import ghidra.program.model.lang.Register;
import ghidra.program.model.lang.RegisterValue;
import ghidra.program.model.listing.ProgramContext;

public class SetRegisterX27 extendsGhidraScript {

 @Override
 public void run() {
 try {
 // Define the register to modify
 Register x27Register= currentProgram.getRegister("x27");
 if (x27Register== null) {
 println("Register 'x27' not found in the current program.");
 return;
 }

 // Define the value to set for the register
 BigInteger registerValue= new BigInteger("107780080", 16); // Object Pool Address
 RegisterValue x27Value= new RegisterValue(x27Register, registerValue);

WHITEPAPER

 // Define the address range to apply the value
 Address startAddress= toAddr(0x106058000L); // Replace with your start address
 Address endAddress= toAddr(0x106239B7FL); // Replace with your end address

 // Set the register value within the specified range
 ProgramContext programContext= currentProgram.getProgramContext();
 programContext.setRegisterValue(startAddress, endAddress, x27Value);

 println("Successfully set the register 'x27' value in the specified range.");
 } catch (Exception e) {
 println("Error: " + e.getMessage());
 }
 }
}

Go to register manager as shown below:

Figure 31b: Screenshot of Register Manager

WHITEPAPER

Make sure that the Start, and the Value should be set to the address of the Object Pool:

Figure 32: Screenshot of Register Manager Start and End Address

Now Auto Analysis needs to be done:

Figure 33: Screenshot of Auto Analysis

WHITEPAPER

It can be observed that the references between code and data have been resolved:

Figure 33b: Screenshot of Auto Analysis Result

Figure 34: Screenshot of Auto Analysis Result Cont.

WHITEPAPER

Handling Dart VM’s Custom Stack

import ghidra.app.script.GhidraScript;
import ghidra.program.model.address.Address;
import ghidra.program.model.address.AddressSet;
import ghidra.program.model.address.AddressSetView;
import ghidra.program.model.listing.Instruction;
import ghidra.program.model.listing.InstructionIterator;
import ghidra.program.model.listing.Listing;
import ghidra.program.model.lang.Register;
import ghidra.app.plugin.assembler.Assembler;
import ghidra.app.plugin.assembler.Assemblers;

public class ReplaceX15WithSP extends GhidraScript {

 @Override
 public void run() {
 // Retrieve the SP register
 Register spRegister = currentProgram.getProgramContext().getRegister("sp");

 // Retrieve the x15 register
 Register x15Register = currentProgram.getProgramContext().getRegister("x15");

 // Define the address range
 AddressSet addressRange = new AddressSet(
 toAddr("0x106058000L"),
 toAddr("0x106239B7FL")
);

 // Replace occurrences of x15 with SP in the defined address range
 replaceRegisterInRange(addressRange, spRegister, x15Register);
 }

 private void replaceRegisterInRange(AddressSetView addressRange, Register
spRegister, Register x15Register) {
 Listing listing = currentProgram.getListing();
 Assembler assembler = Assemblers.getAssembler(currentProgram);
 InstructionIterator instructions = listing.getInstructions(addressRange, true);

Since Dart VM uses X15 as the stack pointer, tools like Ghidra fail to identify local variables and
parameters. To resolve this:

1.Replace X15 with SP across relevant code ranges.
2.Set X27 (object pool register) to a known value in Ghidra’s memory map.
3.Perform auto-analysis to establish cross-references between code and data.

 The script below replaces X15 register with SP register for a given range of addresses:

 // Iterate through instructions in the address range
while (instructions.hasNext() && !monitor.isCancelled()) {
 Instruction instruction = instructions.next();

 // Check each operand of the instruction for the x15 register
for (int operandIndex = 0; operandIndex < instruction.getNumOperands(); operandIndex++)
{
Object[] operands = instruction.getOpObjects(operandIndex);

// Replace x15 with SP if found
for (Object operand : operands) {
if (operand instanceof Register && operand.equals(x15Register)) {
 String patchedInstruction = instruction.toString()
 .replace(x15Register.getName(), spRegister.getName());
 println("Patching: " + patchedInstruction);

 // Get the instruction's address
 Address instructionAddress = instruction.getAddress();

 try {
 // Use the assembler to write the patched instruction to memory
 assembler.assemble(instructionAddress, patchedInstruction);
 } catch (Exception e) {
 println("Failed to patch instruction at address: " + instructionAddress);
 e.printStackTrace();
 }
}
}
 }
 }
 }
}

WHITEPAPER

WHITEPAPER

Figure 35: Screenshot of Disassembly Window before Stack handling script execution

Before running the script:

WHITEPAPER

Figure 36: Screenshot of Disassembly Window After Stack handling script execution

After patching the stack pointer, the Dart stack is considered to be the regular stack by Ghidra.
Next, let Ghidra know that the parameters it is looking for are in the stack, not in the registers that it
would usually use.

Unlike ARM64’s standard use of X0-X7 for parameters, Dart passes all parameters on the stack. Adjust
function signatures in Ghidra manually to reflect this.

1.Navigate to the function signature editor.
2.Define parameters based on stack values.

This can be accomplished by using Edit Function Signature as shown below:

Correcting Function Parameter Interpretation

After running the script:

WHITEPAPER

Figure 37: Screenshot of edit function signature in Ghidra

Figure 37b: Screenshot of edit function signature in Ghidra cont.

About Security Innovation/
Bureau Veritas

Security Innovation is a leader in
software security, providing
comprehensive assessment solutions
to secure software from design to
deployment, across all environments,
including web, cloud, IoT, and mobile.
Leveraging decades of expertise and
as part of Bureau Veritas, a global
leader in Testing, Inspection, and
Certification, we seamlessly integrate
world-class security into development
processes, safeguarding the way
companies build and deliver products.

Security Innovation is a Bureau
Veritas company. Bureau Veritas (BV)
is a publicly listed company
specialized in testing, inspection and
certification. BV was founded in 1828,
has over 80,000 employees and is
active in 140 countries.

Contact us today to start raising
your cyber resilience.

Interested?
sisales@securityinnovation.com

 +1 877 839 7598

securityinnovation.com

Flutter and Dart Source Code/Documentation

reFlutter Framework

Guardsquare Blog

Guardsquare Blog 2

Minesweeper Source YT

Dart Blog - Numeric Computation

References

In this guide, we improved Ghidra’s ability to decompile
Flutter applications by:

Establishing cross-references between Dart code
and deserialized objects.
Correcting the stack pointer usage for proper
decompilation.
Adjusting function signatures to align with Dart’s
parameter-passing model.

This methodology provides a strong foundation for
reverse engineering Flutter apps on iOS, enabling
deeper insights into their architecture and functionality.

Conclusion

mailto:sales@securityinnovation.com
tel:+18778397598
https://www.securityinnovation.com/
https://github.com/dart-lang/sdk
https://github.com/Impact-I/reFlutter
https://www.guardsquare.com/blog/current-state-and-future-of-reversing-flutter-apps
https://www.guardsquare.com/blog/obstacles-in-dart-decompilation-and-the-impact-on-flutter-app-security
https://www.youtube.com/watch?v=hrvtfNlLcF4
https://dart.cn/articles/archive/numeric-computation

